Intelligent genetic algorithm: a toy model
application

Jaime Mora Vargas', Neil Hernandez Gress', and Miguel Gonzélez Mendoza!

Instituto Tecnoldgico y de Estudios Superiores de Monterrey,
Campus Estado de México, Carr. Lago de Guadalupe Km. 3.5
Atizapédn de Zaragoza, Estado de México, México
{jmora, ngress, mgonza}@itesm.mx
http://wuw.cem.itesm.mx

Abstract. We argue that the performance of a genetic algorithm can be
improved by the codification of its operative rates into the chromosome.
In the case of the flowshop problem the claim is that mutation and
crossover rates allow the genetic algorithm to adapt better and faster
than the traditional genetic algorithm. We support our claim with a
simple “toy model” with two instances of flowshop problem, an special
case of scheduling with multiple applications to industrial problems. We
refer to that genetic algorithm as Intelligent Genetic Algorithm (IGA)
since its ability to self-modify its operative characteristics.

1 Introduction

Genetics algorithms have been applied to various optimization problems (Gold-
berg [5]). In this paper, a genetic algorithm is improved using local search pro-
cedures, and self-adaptation rates of genetic operators.

In the literature, many hybrid algorithms ([10,4,7,14]) of GA’s were pro-
posed for flowshop optimization problems, those algorithms are a combination
of traditional GA and artificial intelligence techniques (e.g tabu search, simulated
annealing). In those studies, it was clearly shown that the performance of GA’s
for scheduling problems was improved using neighborhood search algorithms.

Flowshop problems are included into scheduling problems. Great efforts are
devoted to its economical importance. Unfortunately, finding optimal scheduling
for a general production process is an NP-hard problem (Garey and Johnson,
[3]). This means that traditional operations research techniques such as inte-
ger programming (branch and bound techniques [13]) or dynamic programming
(Bellman and Dreyfus [1]) are not adequate to deal with large scale problems.
Therefore, the interest of many researchers has been oriented to find good solu-
tions (not always a global optimum) in a reasonable time. Considering this, the
use of metaheuristics techniques are well suited.

A major issue for metaheurists is the fine-tuning for parameters, i.e tabu
list length (for tabu search), initial temperature (for simulated annealing) or
crossover and mutation rates (for genetic algorithms). In this article, a modifi-
cation is made to traditional GA, creating the ”intelligent” Genetic Algorithm

© A. Gelbukh, R. Monroy. (Eds.)
Advances in Artificial Intelligence Theory
Research on Computing Science 16, 2005, pp. 175-184

176 J. Mora, N. Hernandez, M. Gonzalez

(IGA) which doesn’t need fine tuning of crossover and mutation rates. This
technique was originally used with simple optimization landscapes ([17]) and to
travelling salesman problem instances ([18]) with encouraging results.

This article is organized as follows: section 2 includes a general description
of the flowshop problem as well as details for the 2 treated problems, also a
brief introduction to GA is provided. Section 3 contains specific details about
representation of flowshop problem, Section 4 includes details about the exper-
iments done, Section 5 shows the most representative graphics and comments
about experimentation and Section 6 has the conclusions and future work of this
article.

2 Problem Description

Flowshop problems in particular, are a special case of scheduling problems and
scheduling problems arise in the combinatorial optimization area. General as-
sumptions for flowshop are (more details in Dudek et al. [2]): 1) jobs are to be
processed by multiples stages sequentially, 2) there is one machine at each stage,
3) machines are available continuously, 4) a job is processed on one machine at a
time without preemption, and 5) a machine processes no more than one job at a
time. For this paper, n jobs are processed in the same order on m machines. Con-
sidering this, this paper works with a sequencing problem of flowshop scheduling
of n-jobs.

Considering notation from Ishibuchi [8], the completion time and process-
ing time of job j on machine ¢ are t¢(i,7) and ¢p(i,7) respectively. The n-
dimensional vector = (z1,2,...,Z,) represents the sequence of n jobs to be
processed, where xj; denotes the k-th processing job. Completion time for each
sequence x is calculated by:

te(l,z1) =tp(1,21) (1)
tc(i,l‘l) = tc(i - 1,$1) + tp(i,$1),i =23,...,m, (2)
to(i,xg) =to(i — 1, ap—1) + tp(i,zr), k =2,3,...,n, (3)

to(i,zk) = max{tc(i — 1,a), te(i,zp—1)} + tp(i, zp),
1=23,....mk=23,...,n (4)

Flowshop scheduling problems are to determine the sequence of x of n jobs
based on a given scheduling criterion. According to Johnson’s work [11] the
reduction of makespan if one of the most extended criteria, also reduction of
tardiness is employed. The makespan is the completion time of the last job:

Makespan(x) = tc(m, x,) (5)

Intelligent Genetic Algorithm: A Toy Model Application 177

Also maximum tardiness is other criteria used, it is defined as the maximum
tardiness of the n jobs to schedule, that is:

Tardiness =
max{tc(m,1) —dy,tc(m,2) —ds,..., tc(m,n) —d, } (6)
tc >d

where d; represents due date for job 1.

2.1 Genetic Algorithms

Genetic algorithms are one of the heuristic optimization algorithms widely used
by many researchers in solving various problems, were introduced by Holland
[6]. Genetic algorithms mimic the mechanism of genetic evolution in biological
nature. In biological terms, it consist of a chromosome composed of genes, each
one of them with several alleles, into the optimization field, this chromosome is
a string that usually represents a possible solution to some optimization prob-
lem, each string is composed of bits with specific values. Initially, a number of
chromosomes form an initial pool of solutions. The process of crossover and mu-
tation will be carried out in the pool, after that an evolution is completed and
new chromosomes (offspring) will be generated.

GAs have two major processes. First, GAs randomly generate new solutions.
Second, the evolution of those initial solutions is done according to the genetic
operators such as reproduction (selection of the fittest), mutation (exploration
operator) and crossover (exploitation operator).

3 Problem Representation

3.1 Chromosome

Configuration for flowshop problem using GA uses a string base codification,
where each individual in the population represents a possible sequence of jobs to
be done. For example, the sequence z = (1, 3, 2,4) represents a sequence of 4 jobs,
where job 1 is done first, followed by jobs 3, 2 and 4. That kind of representation
is currently used to solve scheduling problems using GA.

3.2 Genetic operators

In this paper, two genetic operators were used : crossover and mutation in order
to exploit results (crossover) and explore solutions (mutation). The crossover
operator is the two-point order crossover and for mutation, it is used the shift
change, details for such operators can be found in [14]. Such operators work
selecting a random number and compare to the operation rates if it is smaller
then the operator is applied to that individual.

In order to improve search for new solutions, a local search procedure was
used, this procedure consisted in the permutation of size 1 for every population

178 J. Mora, N. Hernandez, M. Gonzalez

element, selecting the best one. For example, for individual (1,2, 3), the possible
neighbors would be (2,1,3),(3,2,1) and (1, 3,2) this local search avoid the use
of large populations, also it doesn’t require important computational resources.

The reproduction of individuals is made using the so-called tournament re-
production of size ¢, where =2, it function by selecting by random N/t sets of ¢
elements and passing the element with the highest fitness of each set to the next
generation, this procedure is done ¢ times to assure that the population number
N remains constant. Ties broken by random.

For the IGA, the standard genetic operators for binary codification [5] were
used.

3.3 Fitness function

The fitness function used combines two objectives, minimize makespan and max
tardiness. Using equations 5 and 6 it is possible to create a global equation for
the ¢-th individual, that is:

f@) = —log(MaxTardiness;) — log(Makespan;) (7)

The log function is used in order to re-normalize the values of makespan and
tardiness. As the GA nature is maximize, the use of ”-” allows to get better
results (i.e., small makespan and small tardiness)

3.4 Intelligent GA

The “Intelligent Genetic algorithms” are a modification of traditional genetic
algorithms in which the crossover and mutation rates are codified into the chro-
mosome, for this paper, a string of 5 bits was used to codify in binary. In this
manner, the max value (in decimal) is 2° = 32 so it is possible to configure
value rates between 0 and 1 with an interval of 1/32 = 0.03125. The translation
process consists in translate from binary to decimal and divide that value by the
max value possible. Using this configuration, a complete individual is by exam-
ple [1,2,3,4/00101|11000] representing that the first job to be processed is job
1, followed by jobs 2, 3 and 4, also the mutation probability is 00101 = 0.15625
and the crossover rate is 11000 = 0.75. Two types of genetics operators were
used, those applied to the flowshop configuration and those applied to the op-
erators rates configuration, for the flowshop configuration, two-point order (for
crossover) and shift change (for mutation) were used. The traditional two par-
ents, two points crossover and change between 0 and 1 mutation operator were
used to the chromosome section that codifies operators rates. The sequence used
was: first apply operators to flowshop section followed by the application of
operators to codification rates section.

This self-codification allows the algorithm to avoid selecting optimal muta-
tion and crossover rates, a time-consumption task that must be completed before
run any standard GA. Special attention must be on IGA since self-adaptation
capacity allows to apply GA into time-dependent landscapes.

Intelligent Genetic Algorithm: A Toy Model Application 179

4 Experiments

The experiments were realized using a flowshop problem of 5 machines-10 jobs
(5M10J) and 5 machines-30 jobs (5M30J).

Table 1. Processing times 5M10J

j1[52]33134]35]36]37[38[39]j10
m1|32[1 |61[42[62[61] 3 [97]26] 9
m2|21]27(87(45[59|24(71[34]20] 28
m3[10[42[66]75[41[24] 3 [36]85| 74
m4[51]19]23[85[86/81[93[31[75] 23
mb5|33[45[58(97(91(85[30(38[17| 51

Table 2. Due date times, 5M10J

job|Due date
jl 674
j2 396
i3] 431
j4 369
jb 626
j6 597
7 790
i8 437
9] 656
jlol 780

Table 3. Processing times 5M30J (jobs 1-10)

j1[52[33134 135136 37[38139]i10
m1(32[1 [61[42[62[61] 3 [97]26] 9
m2[21[27(87[45[59(24(71[34]20] 28
m3|10[42[66(75(41[24] 3 [36/85| 74
mA[51]19|23[85(86|8193(31[75[23
mb[33(45(58(97(91(85(30(38[17] 51

Table 1 shows the processing times for job n in machine m, for example, job
2 in machine 2 takes 27 time units, job 10 in machine 5 takes 51 time units.
Table 2 shows the due date for each job. Tables 3,4 and 5 include the processing
times for 5M30J, table 6 shows the due dates for 5M30J problem.

180 J. Mora, N. Hernandez, M. Gonzalez

Table 4. Processing times 5M30J (jobs 11-20)

115

j13[j14

i15

716

17

718

19

ml

47

35|88

84

79

94

56

m2

29

81|94

7

19

75

47

m3

43

4985

79

34

93

64

m4

25

83|80

83

45

88

49

mb

50

40

85|78

7

48

44

Table 5. Processing times 5M30J (jobs 21-30)

i1l

12

j13[j14

i15

716

17

718]j

ml

43

38

65|92

78

45

67

71

m2

38

8

76193

83

32

37

80

m3T47]

277

417797

797

35

387

697

m4

49

28

51|78

78

46

78

80

mbd

43

17

78|83

82

46

35

86

Table 6. Due date times, 5M10J

job|Due date|job|Due date|job|Due date
1 674 11 674 21 436
2 396 |12| 707 |22| 456
3 431 13 569 23 764
4 369 14 671 24 645
5 626 |15 509 (25| 738
6 597 |16| 465 |26| 451
7 790 17 490 27 611
8 437 18 492 28 746
9 656 |19| 429 (29| 420
10/ 780 |20| 613 |30| 651

Intelligent Genetic Algorithm: A Toy Model Application 181

5 Results

The experiments carried out where done considering the problems mentioned in
previous section, the objective of that experiments was to compare standard GA
versus Intelligent GA. Both GA types used a population size of 500 individuals,
and 510 generations. The provided results considers the average value for 20 runs
per experiment.

For the standard genetic algorithms several experiments where done using
different crossover and mutations rates. In this paper, results for fixed mp (mu-
tation probability) and ¢p (crossover probability) are provided, the graphs shows
results for mp = 0.4-cp = 0.1, mp = 0.01-¢p = 0.01 which are compared with

the IGA performance.

e +
€0.4m0.1 x
001 *

Average Fitness

14 - -
0 100 200 300 400 500 600

Generations

Fig. 1. Fitness comparison, 5 machines, 10 jobs.

T
Mutation Rate ~ +
Crossover Rate x

0- -
0 100 200 300 400 500 600

Generations

Fig. 2. Operative Rates, 5 machines, 10 jobs.

Figure 1 shows the comparison between average fitness for mp = 0.4-cp = 0.1,
mp = 0.01-cp = 0.01 and IGA considering 5M10J problem, data showed are the
average fitness for the entire population. For this case, mp = 0.01-¢p = 0.01 and

182 J. Mora, N. Hernandez, M. Gonzalez

IGA +
€0.4m01 x
€0.0Im00L *

Average Fitness

0 100 200 300 400 500 600
Generations

Fig. 3. Fitness comparison, 5 machines, 30 jobs.

T
Mutation Rate
Crossover Rate

x+

L
200 300 400 500 600
Generations

Fig. 4. Operative Rates, 5 machines, 30 jobs.

Intelligent Genetic Algorithm: A Toy Model Application 183

IGA have similar results. All three configurations find rapidly the optimal value
(at generation 25 aprox). It is important to mention that 5M10J problem has a
feasible space 10! = 3628800 size, which is very simple to solve using exhaustive-
search procedures, the reason to use such landscape is to gain experience with
the IGA and track their results.

The operative rates for genetic operators are showed in figure 2, one the
IGA has find the optimum, it reduces its mutation and crossover rate, the latter
achieving its stable value faster than mutation rate, this is related with the im-
pact of the operator, i.e. mutation is a more destructive operator than crossover,
then the search for new possible solutions continues by more time than the ex-
ploitation of results already found.

Figure 3 shows the comparison between mp = 0.4-cp = 0.1, mp = 0.01-
c¢p = 0.01 and IGA considering 5M30J problem, data showed are the average
fitness for the entire population. As this graph shows, it is clear that IGA have
better performance than mp = 0.01-cp = 0.01. The convergence of IGA take
more time than the others, the reason is that the IGA have to modified its
operative ranges. Also, mp = 0.01-¢cp = 0.01 has a better performance than
mp = 0.4-cp = 0.1, although mp = 0.4-cp = 0.1 goes faster to a local optimum,
moreover mp = 0.4-cp = 0.1 has more changes between every generation this is
because the mutation and crossover rates are relatively high, allowing to loose
good solutions.

Figure 4 shows the mutation and crossover rate along the 510 generations
of the experiment, note the changes in the rates, first descending to values of
0.15 for mutation and 0.16 for crossover. Again and similar to 5M10J mutation
rate takes more values before get stable. Both crossover and mutation rates
remains with the same value once an optimum is reached, and off course by the
population effect (all individual have the same operation rates).

6 Conclusions

This article presents an application of a called “Intelligent Genetic Algorithms”,
a type of genetic algorithm which is able to modify its operational rates in
order to achieve a global optimum. Such characteristic could be very important
specially for problems in which the environment changes over time. Also IGA
avoid fine-tuning of parameters, mostly always a time-consuming task.

The examples treated in the article are flowshop problems with 5 machines-
10 jobs and 5 machines-30 jobs problems, in both examples treated, IGA have
a better performance than standard GA, however it is possible to prove that
by adjusting standard GA parameters it could perform better that IGA. Then
the main application for IGA seems to be problems in which the environment
changes over time, since the IGA can adapt to changes modifying its operative
rates. In the case standard GA once the change occurs and since the majority
of population is in the “old optimum” it can not be able to move to the new
optima.

184 J. Mora, N. Hernandez, M. Gonzalez

References

1. Bellman, R.E. and Dreyfus, S.E., Applied Dynamic Programming, Princeton Uni-
versity Press (1962)

2. Dudek R.A., Panwalkar S.S. and Smith M.L., The Lessons of Flowshop Scheduling
Search, Operations Research, Vol. 47 No. 1 (1992) 65-74

3. Garey, M. and Johnson, D.,Computers and intractability: A guide to the theory of
NPCompleteness. Freeman and Co.San Francisco (1979)

4. Glass C. A., Potts C. N., and Shade P., Genetic algorithms and neighborhood search
for scheduling unrelated parallel machines, Univ.Southampton, Southampton, U.K.,
Preprint Series ORA47 (1992)

5. Goldberg, D.E., Genetic Algorithms in Search, Optimization, and Machine Learn-
ing, Addison-Wesley Publishing Company. Reading, Massachusetts (1989)

6. Holland, J.H., Adaptation in Natural and Artificial Systems, University of Michigan
Press, Ann Arbor MI (1975)

7. Ishibuchi H., Yamamoto N., Murata T., and Tanaka H., Genetic algorithms and
neighborhood search algorithms for fuzzy flowshop scheduling problems, Fuzzy Sets
Syst., Vol. 67 (1994) 81-100

8. Ishibuchi H., Murata T. and Tomioka S., Effectiveness of Genetic Local Search
Algorithms, Proc. 7th International Conference on Genetic Algorithms (1997) 505-
520

9. Ishibuchi H. and Murata T., A Multi-Objective Genetic Local Search Algorithm
and Its Application to Flowshop Scheduling IEEE Transactions on systems, man,
and cyberneticspart C: applications and reviews, Vol. 28 No. 3 (1998) 392-403

10. Jog P., Suh J. Y., and Gucht D. V., The effects of population size, heuristic
crossover and local improvement on a genetic algorithm for the traveling salesman
problem, Proc. 3rd Int. Conf. Genetic Algorithms (1989) 110-115

11. Johnson S. M., Optimal Two- and Three-stage Production Schedules With Setup
Times Included, Naval Research Logistics Quarterly, Vol. 1 No. 1 (1954) 61-68

12. Kursawe F., A variant of evolution strategies for vector optimization, Parallel Prob-
lem Solving from Nature, H.-P. Schwefel and R. Manner,Eds., Vol. 15 | Berlin Ger-
many (1993) 754-770

13. Lawler, E.L. and Wood, D.E., Branch and Bounds Methods: A survey”, Operations
Research, Vol. 14 (1966)

14. Murata T. and Ishibuchi H., Performance evaluation of genetic algorithms for
flowshop scheduling problems, Proc. 1st IEEE Int. Conf. Evolutionary Computat.
(1994) 812-817

15. Murata T. and Ishibuchi H., MOGA: Multi-objective genetic algorithms, Proc. 2nd
IEEE Int. Conf. Evolutionary Computat. (1995) 289-294

16. Schaffer J. D., Multi-objective optimization with vector evaluated genetic algo-
rithms, Proc. 1st Int. Conf. Genetic Algorithms (1985) 93-100

17. Stephens C.R. and Mora J., Effective Fitness as an Alternative Paradigm for Evo-
lutionary Computation I: General Formalism, Genetic Programming and Evolvable
Machines, Vol. 1, No. 4 (2000) 363-378

18. Stephens C.R. and Mora J., Effective Fitness as an Alternative Paradigm for Evo-
lutionary Computation II: Examples and Applications, Genetic Programming and
Evolvable Machines, Vol. 2, No. 1 (2001) 7-32

